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Reactor systems potentially meeting the Generation |V goals
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Figure 1: Potential Generation IV reactors [1]. 3/25
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Why Molten Salt Reactors?

® High average coolant temperature (600-750°C) = high thermal efficiency.

® May operate with epithermal or fast neutron spectrums.
© Various fuels can be used (U, #*3U, Thorium, U/Pu).
@ Liquid fuel has strong negative temperature feedback.
@ Liquid fuel drains into tanks in emergency.

® High fuel utilization = less nuclear waste generated.

@ Online reprocessing and refueling.

© Breed fissile 22U from #*2Th (breeding ratio 1.06).

® 222U, 35U, or B%Pu for the initial fissile loading.

® Thorium cycle limits plutonium and minor actinides.

0 Could transmute Light Water Reactor (LWR) spent fuel.
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Molten Salt Reactor Experiment vs Molten Salt Breeder Reactor

® 8 MWy, ® 2.25GWy,, 1GW,
® Fuel salt ® Fuel salt
o 7LiF-BeF,-ZrF;-UF, o LiF-BeF,-ThF4-233UF,
o TLiF-BeF,-ZrF4-UF4-PuF; o TLiF-BeF2-ThF4-233UF4-23°PuFs
® First use of 23U and mixed U/Pu © Breeding ratio 1.06
@ Single region core 0 Single fluid /two-region core design

@ Operated: 1965-1969 at ORNL @ Chemical salt processing plant
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Research objectives

@ Develop simplified single-cell MSBR model using the continuous-energy
SERPENT 2 Monte Carlo reactor physics software [4].

® Using the built-in SERPENT 2 depletion capabilities simulate online
reprocessing and refueling regime.

® Find the equilibrium core composition for the MSBR.

@ Depletion simulation using a full-core, 3-D, high-fidelity MSBR model.
® Additional SERPENT 2 flow control system will evaluate material flows.
® Optimization of reprocessing parameters and reactor design.

@ Determine and compare major safety characteristics for initial and
equilibrium fuel composition.
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Input data

Table 1: Summary of principal data for MSBR [3]

Thermal capacity of reactor 2250 MW(t)
Net electrical output 1000 MW(e) Tia Tomay
Net thermal efficiency 44.4% ¥ ’
Salt volume fraction in central core zone 0.132 ) P ~
Salt volume fraction in outer core zone 0.37 | ") Foms e
Fuel-salt inventory (Zone 1) 82m’
Fuel-salt inventory (Zone 1I) 10.8 m* e
- REFLECTOR conTRoL Roos
Fuel-salt inventory (annulus) 3.8 m’ =5 \
o7l | Y

Fuel salt components LiF-Bels- Lr ',,"

ThE;- " UF,- /

SIPuF; Fo ; MODERATOR
Fuel salt composition T1.767-16-12-

0.232-0.0006

mole%

TZAN

Figure 2: Plan view of MSBR vessel [3].
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Graphite unit cell geometry

Figure 3: Molten Salt Breeder Reactor Zone | unit cell geometry from the reference [3]
(left) and SERPENT 2 (right).



Background
Methodology

Results and discussion
Conclusior

Online reprocessing method

o Currently, researchers typically develop custom scripts to simulate online
reprocessing and refueling using stochastic (i.e. MCNP) or deterministic
(i.e. SCALE) codes [5, 6].

| 3days depletion calculation for MSBR whole core by MCNP6 |
1

| Removing fission products and adding fertile material (>**Th) by PYTHON |
1

| Creating new input by using reprocessed material data by PYTHON |

Equilibrium state?

| Getting equilibrium composition |

Figure 4: Depletion calculation principal scheme [7].

e SERPENT 2 allows the user to define multiple material flows into and out
of the fuel and applies batchwise reprocessing and refueling at each step.
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Online reprocessing method
B
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Figure 5: Protactinium isolation with uranium removal by fluorination [3].

e Continuously removes all poisons, noble metals, and gases.

o 23Pa is continuously removed from the fuel salt into a decay tank.
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Approximations and assumptions

@ Single cell model of MSBR with periodic boundary conditions.

® Delayed neutron precursor drift is neglected.

O Trel = Tgraphite = 908K.

@ pre=3.33 g/cm® and pgraphire=1.843 g/cm?.

© 10" neutrons per cycle for a total of 500 cycles, the first 20 are inactive.
©® ENDF/B-VII cross sections were used [8].
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Infinite multiplication factor for unit cell model

Los le13
ls.s
1.04 - lgqm
—_
5 &
g by
L 103 835
[= -
=) .
S
.g 8.2 E
3 1.02 =
= g
] e
= 2
™
1.01 1 ~
Ls.0
1.00 ! | | | |
0 200 400 600 800 1000

Time step [days]

Figure 6: Infinite multiplication factor during a 1200 day
depletion simulation. The confidence interval +o is
shaded.

Strong absorbers

(33 Th,%*U) accumulating in
the begining of cycle.

Fissile materials other than
23U are bred into the core
(235U 239PU).

Fresh fuel refill rate was
changed after 400 days of
operation to adjust these
effects.

The multiplication factor
stabilizes after approximately
950 days.
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Fuel salt composition evolution
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Figure 7: Normalized number density of major isotopes

e Number density of 2*Pa is

negligible (10'° 1/cm?®) but
some small amount of it is
produced during the 3-day
reprocessing period.

Fissile materials other than 23U

are produced in the core (U,

239py).

9Py from initial fissile loading
fully depleted after 250 days but
then slowly produced from 28U,
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Rate of change 23°Th and 233U in the core
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Figure 8: Rate of change of major isotopes during online
reprocessing.
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Rate of change 233Pa, 233U from the protactinium decay tank
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Figure 9: Isotopic rate of change for the protactinium decay tank
during MSBR online reprocessing.
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Neutron spectrum

Initial state
—— Equilibrium state

Neutron flux per lethargy
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Figure 10: Neutron spectrum for initial and equilibrium composition (normalized per

lethargy).

e MSBR has a epithermal spectrum which is perfect for thorium fuel cycle.
e Spectrum becomes harder due to fission product accumulation. 18/25
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Conclusions

e MSBR unit cell online reprocessing simulation was performed using the
SERPENT 2 Monte Carlo code to find equilibrium fuel composition.

o Infinite multiplication factor slowly decreases and reaches the equilibrium
state after 950 days of operation.

e To achieve equilibrium state and maintain criticality, the material flow rate
should be adjusted, ideally, for each 3-day step.

e The neutron energy spectrum is harder for the equilibrium state because a
significant amount of fission products were accumulated in the MSBR core.
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Future research

@ Depletion simulation using a full-core, 3-D, high-fidelity MSBR model.

® Additional SERPENT 2 flow control system development to simulate
adjusting material flows depending upon the instantaneous reactivity.

©® Reprocessing parameters (e.g. time step, feeding rate, protactinium removal
rate) optimization will be performed to achieve maximum fuel utilization,
breeding ratio or safety characteristics.

® Temperature coefficients of reactivity, rod worth, power density will be
computed for initial and equlibrium fuel composition to determine influence
of fuel depletion on MSBR safety.

@ LWR fuel transmutation study.
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Generation |V Reactors

@ Sustainability

® Economics
© Safety and Reliability
@ Proliferation Resistance and Physical Protection

Generation T
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Figure 11: A Technology Roadmap for Gen IV Nuclear Energy Systems [1].
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MSBR plain view
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