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Reactor systems potentially meeting the Generation |V goals
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Figure 1: Potential Generation IV reactors [1]. 3/23
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Why Molten Salt Reactors?

@ High average coolant temperature (600-750°C) = high thermal efficiency,
hydrogen production, cheap heat for chemical industry.

® May operate with epithermal or fast neutron spectrums.
© Various fuels (**U, 22U, Thorium, U/Pu).

@ Inherent safety advantages: fuel already liquid and drains into tanks in
emergency.

@ Large fuel utilization = less nuclear waste generated.

@ Online reprocessing and refueling.

©® Breed fissile 23U from 22Th with the breeding ratio 1.06 gives an annual
fissile yield of 3.3%.

@® Fuel salt heats up to 705°C which makes thermal efficiency of over 44%.
©® 222U, 2%U, or 2°Pu could be used for the initial fissile loading.

® Outstanding neutron economy because of single-fluid two-region design.
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Molten Salt Reactor Experiment vs Molten Salt Breeder Reactor

® Maximum power 8 MW,y ® Maximum power 2.25GWy,, 1IGW,
® Fuel salt ® Fuel salt

o 7LiF-BeF,-ZrF4-UFy o TLiF-BeF,-ThF4-233UF,

o TLiF-BeF,-ZrF4-UF4-PuF; o TLiF-BeF2-ThF4-233UF4-23°PuFs
® First use of 23U and mixed U/Pu © Breeding ratio 1.06
@ Single region core 0 Single fluid /two-region core design

@ Operated: 1965-1969 at ORNL
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Research objectives

@ Create high-fidelity full-core 3-D model of MSBR, ideally, without any
approximations.

® Run steady-state criticality simulation using the SERPENT 2 Monte Carlo
code [3] to determine effective multiplication factor and neutron spectrum.

® Find temperature effect of reactivity varying fuel salt and graphite
temperature from 900K to 1200K.

© Compare obtained results with Park (MCNP6) model of MSBR [4] and
Robertson et al. [2].

@ Depletion calculations, including online reprocessing simulation.

® Nuclear data generation for multi-physics transient analysis (full-core model
needed for asymmetric accidents).

© Fuel cycle optimization.
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Table 1: Summary of principal data for MSBR [2]

Thermal capacity of reactor

2250 MW(t)

Net electrical output

1000 MW (e)

Net thermal efficiency

44.4% SALT TO PUMP

Salt volume fraction in central core zone

(4 ToTAL)
0.132

Salt volume fraction in outer core zone

0.37

Fuel-salt inventory (Zone I)

8.2m’

Fuel-salt inventory (Zone II)

10.8 m?

Fuel-salt inventory (annulus)

38m’ # 0

Fuel salt components

LiF-BeF,-
ThF:-**UF,

Fuel salt composition

71.767-16-12- arapne
0.232 mole% IBEEIN

/
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Figure 2: Graphite moderator element.
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Geometry of MSBR model for SERPENT 2 1

Figure 3: Plan (left) and elevation (right) view of MSBR model
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Core Zone |l
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Figure 5: Detailed plan view of graphite reflector and moderator elements.
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Approximations and assumptions

@ Zone |I-B elements simplified into right-circular cylindrical shapes with
central channels.

® Axial ribs in Zone | outer layer, Zone |I-B and reflector was not described in
the model.

@ Two graphite control rods are fully inserted.

® Two safety rods are fully withdrawn.

©® Moderator and fuel temperature is 900K.

© 10° neutrons per cycle for a total of 1000 cycles, the first 50 are inactive.

® ENDF/B-VII cross sections were used.
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Steady-state criticality simulation results

Table 2: Effective multiplication factor for full-core
model

SERPENT?2 Park(MCNP6)[4]
Ker  1.0039740.00005 1.00736-0.00009

e SERPENT 2 factor is 300 pcm lower than
that obtained by Park (MCNP6) [4]

e Standard deviation is 5 pcm versus 9 pcm
for Park (MCNP6) model.




Figure 6: Detailed plan view of Park (MCNP6) (left) [4] and SERPENT 2 (right) model.

Possible reasons for the discrepancy

e Park (MCNP6) model has simplification in Zone | geometry.

e Zone |l geometry in Park (MCNP6) has a gap between Zone II-A and Zone

11-B.
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Neutron spectrum

LOp : b — Serpent 2 (this work) 1
: — MCNP6 (Park et al. 2015 [4])
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Figure 7: Normalized neutron spectrum for Park(MCNP6) and SERPENT 2 model.

e Thermal spectrum required to breed fissile 23U from fertile 22Th.
e Hardening the spectrum tends to increased resonance absorption in thorium

and decreased absorption in fissile material.
16 /23
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Temperature effect of reactivity

The effect of temperature change on the reactivity can be expressed by
temperature coefficient of reactivity:

_dp
aT = a7 (1)

TABLE 3: Input data variation for temperature effect of reactivity analysis

ar Nuclear data Density Geometry
temperature

Fuel salt 900-1200K 3.28-3.13 g/cm[2] no changes’

Moderator 900-1200K 1.84 g/cm*[2] expanded?®-3

Total 900-1200K fuel: 3.28-3.13g/cm3 only graphite ex-

graphite: 1.84 g/cm®  panded

uel salt is bounded by the graphite
2yolumes of graphite were recalculated using linear thermal expansion coefficient 1.3x107° 1/K

3graphite density is assumed constant
17/23
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Temperature effect of reactivity (cont.)

TABLE 4: Temperature coefficients of reactivity.

Reactivity coefficient SERPENT 2 MCNPG6 [4] Reference [2]
[pem/K]

Fuel salt —3.38 £ 0.015 —3.20 £ 0.05 —3.22
Moderator +2.33 +£0.027 —0.11£0.05 +2.35

Total —1.57 +0.033 —3.21+0.04 —0.87

e The fuel temperature coefficient (FTC) is negative due to thermal Doppler
broadening of the resonance capture cross sections in the thorium and is in
a good agreement with early research [2, 4].

e The moderator temperature coefficient (MTC) is positive due to thermal
expansion and would increase during reactor operation because of spectrum

hardening along with fuel depletion [4].

e To obtain MTC negative and closer to MCNP6 simulation more details
about changes in Park et al. model needed (i.e. changes in graphite density,

geometry recalculation).

e The isothermal temperature coefficient (ITC) is relatively large and negative
and affords excellent reactor stability and controllability
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e Full-core MSBR 3-D analysis was performed using the SERPENT 2 Monte
Carlo code.

o K for initial fuel composition is slightly larger than 1 (1.00397) which
allows reactor operation from startup to the first online reprocessing cycle.

e The neutron flux energy was calculated for the whole MSBR core.

e The total temperature coefficient is negative, but MTC is negative which
has a negligible effect on safety because it is outweighed by the strong,
negative FTC.

e Simulation results are in a good agreement with Park (MCNP6) model
except moderator temperature coefficient.
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This high-fidelity full-core model will be employed for:

@ Depletion simulations using SERPENT 2 capabilities to find the equliblium
fuel composition of the MSBR.

@ Initial fuel salt composition and reprocessing parameters (i.e. rates of
removing fission products, the rate of refilling thorium) optimization.

©® Problem-oriented nuclear data libraries generation for multi-physics models
of MSBR in the MOOSE-based coupled neutronics/thermal-hydraulics code
Moltres [5].
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Generation |V Reactors

@ Sustainability

® Economics
© Safety and Reliability
@ Proliferation Resistance and Physical Protection
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Figure 8: A Technology Roadmap for Gen IV Nuclear Energy Systems [1].
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