Benefits of Siting a Borehole Repository on Non-Operating Nuclear Facility Quantitative Siting Criteria

Jin Whan Bae, Kathyrn Huff, William Roy Advanced Reactors and Fuel Cycles Group

University of Illinois at Urbana-Champaign

April 1, 2100

ILLINOIS

Outline

1 Background

2 Case Specification

3 Metric Evaluations

Transportation Burder Site Appropriateness Workforce Utilization Consent Basis Site Access Expediency

- Overflowing Spent Nuclear Fuel (SNF) in Reactor Pools Solution now: Expensive Dry Casks
- Most Plants are built in the 70s and 80s, facing license renewal or shutdown = Decommissioning costs

Poses an existential threat to the viability of Nuclear Power in the United States.

Why not reuse the existing licensed land? Solve two issues with one solution:

- Save on decommissioning costs
- Permanent Repository so dry casks are no longer needed

Borehole Repository:

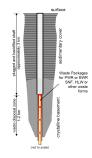


Figure 1: Deep Borehole Schematic [2].

Non-Operating Nuclear Facility

A nuclear power plant facility that is no longer of commercial usage, or no longer produces spent fuel.

Outline

1 Background

2 Case Specification

3 Metric Evaluations

Transportation Burder Site Appropriateness Workforce Utilization Consent Basis Site Access Expediency

Non-operating Reactor Site + Borehole Repository

- Save cost on decommissioning (some parts)
- Earn Revenue from hosting repository
- Save cost on repository facility construction with already existing infrastructure
- · Communities that benefit from power plants are more likely to be friendly

Why Boreholes?

- Less rigorous geolgoical standard (flexible siting)
- modularity
- Area(30km² for 70,000MTHM)
- Less Cost

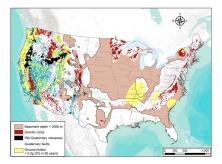


Figure 2: Map of Areas in US with crystalline basement rock at less than 2,000m in depth. Pink areas are suitable for a borehole repository. [8].

Method of Comparison: Case Study

Two cases:

- Reference/Base Case: Yucca Mountain
- Proposed Case: Borehole Repository at Clinton Power Station (Clinton, IL)

- Clinton is under risk of shutting down, despite the recent bill that saved it from shutting down. (Inherent economic disadvantage of single unit reactor site)
- Geological study done for Decatur Carbon Sequestration Project
- Socio-Economic research done in impacts of its shutdown
- Central Location (low MTHM*km value)

6 Quantitative Metrics

- Transportation Burden [MTHM · km]: Less SNF to be transported
- Workforce Utilization [-]: Pre existing skilled workforce
- Expediency [y]: Faster the removal of SNF, more cost savings
- Consent Basis [nuclear/MW capita]: More familiarity and dependency to nuclear = more likely to be consenting
- Site Access [-]: Rail access to the site is essential for beginning operations.
- Site Appropriateness [-]: Must be geologically viable.

- the federal government,
- the state government,
- the local government / community,
- and the owner of the non-operating plant.

Evaluation Method

For Each Metric:

$NV = \frac{x - W}{B - W}$	(1)
NV = normalized value for the metric	(2)
x = considered case value for the metric	(3)
B = best case value for the metric	(4)
W = worst case value for the metric	(5)
	(6)

Some are Boolean - either yes or no.

Weight of metric for each Stakeholder is up to the discretion of evaluator's interpretation. For this paper, the following weight is used:

Metric	Federal	State	Local	Utility
Transportation Burden	3	2	1	1
Site Appropriateness	3	2	1	1
Workforce Utilization	3	2	2	2
Consenting Locals	3	2	3	2
Site Access	3	2	1	1
Expediency	3	2	1	3

Table 1:	Metrics	and	Weight	for	Each	Stakeholder
----------	---------	-----	--------	-----	------	-------------

Transportation Burden Site Appropriateness Workforce Utilization Consent Basis Site Access Expediency

Outline

Background

2 Case Specification

3 Metric Evaluations

Transportation Burden Site Appropriateness Workforce Utilization Consent Basis Site Access Expediency

Transportation Burden Site Appropriateness Workforce Utilization Consent Basis Site Access Expediency

Haversine Formula

Calculates the 'great-circle' distance between two coordinate points * Coordinate data from Wikidata

$\Phi_1, \Phi_2 = {\sf latitude in \ radians}$	(7)
$\lambda_1, \lambda_2 = longitude in radians$	(8)
$\Delta\lambda = \lambda_1 - \lambda_2 $	(9)
$\Delta \Phi = \Phi_1 - \Phi_2 $	(10)
$a=\sin^2(\Delta\Phi)+\cos(\Phi_1)\cos(\Phi_2)\sin^2\left(rac{\Delta\lambda}{2} ight)$	(11)
$c=2\cdot arctan2(\sqrt{a},\sqrt{1-a})$	(12)
$d = (6,371 km) \cdot c$	(13)

Transportation Burden Site Appropriateness Workforce Utilization

MTHM*km Calculation

$$b_i = m_i d \tag{14}$$

$$B = \sum_{i} b_{i} \tag{15}$$

where

b_i = spent fuel transport burden from facility i [km]]	(16)
$m_i = mass$ of spent fuel at facility i [MTHM]	(17)
B = total spent fuel transport burden [MTHM*km]	(18)
N = total number of facilities with spent fuel on site.	(19)

Transportation Burden Site Appropriateness Workforce Utilization Consent Basis Site Access Expediency

Transportation Burden

MTHM of waste in each reactor (data from EIA 2011 Survey - GC859 [6])

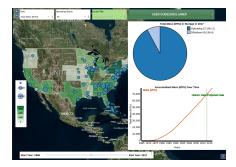


Figure 3: ORNL CURIE map of nuclear waste. [13].

Transportation Burden Site Appropriateness Workforce Utilization Consent Basis Site Access Expediency

MTHM*km For Different Reactors

I

Table 2: Reactors with relatively small spent fuel transportation burden $[MTHM \cdot km]$.

Reactor	State	MTHM * km	License Area [km ²]
Clinton	Illinois	77,352,339	57.87
Dresden	Illinois	77,663,969	3.856
Peach Bottom	Pennsylvania	85,563,135	2.509
Indian Point	New York	84,097,374	.967
Yucca Mountain	Nevada	209,575,157	N/A

Table 3: Transportation Burden for Each Case

Case	Transportation Burden [MTHM · km]	NV
Yucca	209,575,157	0
Clinton	77,352,339	1

Transportation Burden Site Appropriateness Workforce Utilization Consent Basis Site Access Expediency

Site Appropriateness

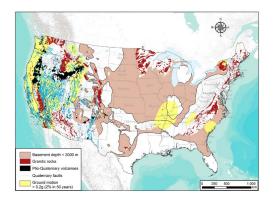


Figure 4: From [14], a map of areas in the US with crystalline basement rock at less than 2000 meters depth. Pink areas suitable for borehole repositories.

Transportation Burden Site Appropriateness Workforce Utilization Consent Basis Site Access Expediency

Site Appropriateness

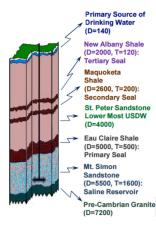


Figure 5: Stratigraphy of the Decatur Region, D is depth in feet. [11].

 Table 4: Site Appropriateness for Each

 Case

Case	Site Appropriateness
Yucca	1
Clinton	1

Transportation Burden Site Appropriateness Workforce Utilization Consent Basis Site Access Expediency

Workforce Utilization

- Local Talent (nuclear experts)
- Transport, Catering and Lodging services
- 700 employees for Clinton [7]
- Yucca Mountain = 2,000 5,000 jobs [15]
- The experts are no longer in Yucca after defunding of project.

Table 5: Workforce Utilization for Each Case

Case	Workforce Utilization
Yucca	0
Clinton	1

Transportation Burden Site Appropriateness Workforce Utilization Consent Basis Site Access Expediency

- Consent-Basis approach to siting is crucial [1, 5, 10, 8]
- Communities near nuclear facilities are more likely to volunteer [12]
- Clinton Pays \$15 million in property taxes [3]
- Yucca was known as "Screw Nevada Bill" strong opposition

Transportation Burder Site Appropriateness Workforce Utilization Consent Basis Site Access Expediency

Consent Basis Metric: NMWPC

I

Nuclear MW Per Capita (NMWPC)

State	Net Nuclear Capacity (MW)	Census Population	NMWPC (10 ⁻³)
South Carolina	6,486	4,625,401	1.4
Alabama	5,043	4,780,127	1.05
Vermont	620	625,745	.99
Illinois	11,441	12,831,549	.89
Nevada	0	2,705,000	0
Average Nuclear States	101,167	265,386,569	.38
Average National	101,167	309,300,000	.33

Table 6: NMWPC values for different states

Table 7: NMWPC values for Each Case

Case	NMWPC	NV
Yucca	0	0
Clinton	.89	.635

Transportation Burden Site Appropriateness Workforce Utilization Consent Basis Site Access Expediency

Site Access

- Railway Access
- Proximity to other power plants
- Illinois Division of Nuclear Safety
- Traversal of Land:

Yucca : 955 counties, 177 million people [9]

Figure 6: From [4], a map of Clinton Power Station in Clinton, IL with the Canadian National rail passing through.

Transportation Burder Site Appropriateness Workforce Utilization Consent Basis Site Access Expediency

Site Access

Figure 7: Yucca Mountain Project Estimated Route [9].

Table 8: Site Access for Each Case

Case	Site Access
Yucca	0
Clinton	1

Transportation Burden Site Appropriateness Workforce Utilization Consent Basis Site Access Expediency

- Existing Infrastructure Fuel Handling Facility Railway
- Quicker Acceptance of SNF = less dry casks built
- 5 years arbitrarily chosen for time of fuel handling facility

Table 9: Expediency in Each Case

Case	Time Saved [y]	NV
Yucca	0	0
Clinton	5	1

Outline

1 Background

2 Case Specification

3 Metric Evaluations

Transportation Burder Site Appropriateness Workforce Utilization Consent Basis Site Access Expediency

Results

Table 10: Metrics and Weight for Each Stakeholder

Metric	Federal	State	Local	Utility
Transportation Burden	3	2	1	1
Site Appropriateness	3	2	1	1
Workforce Utilization	3	2	2	2
Consenting Locals	3	2	3	2
Site Access	3	2	1	1
Expediency	3	2	1	3
Case I total	3	2	1	1
Case II total	16.9	11.2	7.9	9.2

- Mark Ayers, Vicky Bailey, Albert Carnesale, Pete Domenici, Susan Eisenhower, Chuck Hagel, Jonathan Lash, Allison Macfarlane, Richard Meserve, Ernest Moniz, Per Peterson, John Rowe, and Phil Sharp.
 Blue Ribbon Commission on America's Nuclear Future: Report to the Secretary of Energy. Technical report, Blue Ribbon Commission on America's Nuclear Future, January 2012.
- P. V. Brady, B. W. Arnold, G. A. Freeze, P. N. Swift, S. J. Bauer, J. L. Kanney, R. P. Rechard, and J. S. Stein.
 Deep borehole disposal of high-level radioactive waste.
 SAND2009-4401, Sandia National Laboratories, 2009.
- [3] Edith Brady-Lunny.

DeWitt Co. faces tax hit in millions if nuclear plant closes \mid Local Business \mid pantagraph.com, June 2016.

[4] Canadian National Railway Company.

Canadian National Railway Company Network Map - Clinton Station., 2016.

References II

[5] DOE.

Designing a Consent-Based Siting Process: Summary of Public Input Report \mid Department of Energy.

Technical report, September 2016.

[6] Nicholas Domenico.

GC-859 Spent Nuclear Fuel Database, September 2016.

[7] Exelon.

Clinton Power Station, 2016.

[8] Geoff Freeze, Bill Arnold, Patrick V. Brady, David Sassani, Kristopher L. Kuhlman, and Robert McKinnon.

Siting Considerations for a Deep Borehole Disposal Facility.

Pheonix, Arizona, USA, March 2015. Sandia National Laboratories.

 R. HALSTEAD, Fred Dilger, and D. BALLARD.
 Yucca Mountain Transportation Planning: Lessons Learned, 1984-2009. In Proc. WM2011 Conf. Citeseer, 2011.

References III

[10] H. C. Jenkins-Smith, Carol L. Silva, Kerry G. Herron, K. G. Ripberger, M. Nowlin, J. Ripberger, E. Bonano, and R. P. Rechard.

Public preferences related to consent-based siting of radioactive waste management facilities for storage and disposal: analyzing variations over time, events, and program designs.

Technical Report SAND 2013-0032P, FCRD-NFST-2013-000076, Sandia National Laboratories, 2013.

[11] Scott McDonald.

Illinois Industrial Carbon Capture and Storage Project.

Technical report, Department of Energy, July 2012.

[12] Olle Olsson.

Experiences From Consent Based Siting in Sweden, 2013.

[13] ORNL.

The Centralized Used Fuel Resource for Information Exchange (CURIE) MAP, 2016. https://curie.ornl.gov/map.

[14] Frank V Perry, Bill W Arnold, and Richard E. Kelly.

A GIS DATABASE TO SUPPORT SITING OF A DE EP BOREHOLE FIELD TEST. In *Proceedings of IHLRWM 2015*, pages 632–637, April 12-16, 2015, April 2015.

[15] Mary Riddel, Martin Boyett, and R. Schwer.

The Economic impact of the Yucca Mountain nuclear waste repository on the economy of Nevada.

Publications (YM), September 2003.