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Figure 1: Argonne demonstration of a basic pyro plant [5].
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® Safeguard by design.

® Future fuel cycles.

PyRe will be used to answer the following questions
® What is the effect of introducing pyroprocessing plants in the fuel cycle?
® How do various facility designs affect throughput and efficiency?

® Where in a pyroprocessing plant will monitoring most effectively detect
material diversion?

The first two can be directly answered by the archetype. The third requires data
analysis via diversion algorithms.



Cyclus is a modular agent based fuel cycle simulator for tracking commodity
transactions between facilities.
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Figure 2: Example fuel cycle[6].
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Why Cyclus?

Cyclus allows the construction of specific scenarios through the addition of
archetypes. These archetypes are modular and the transactions can be tracked.
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Figure 3: Diversion detection methods within Cyclus.
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PyRe does the following with an
input stream and facility
configuration parameters:

® Pass fuel to voloxidation.

® Generate efficiencies from
parameters.

® Multiply stream by efficiency
matrix.

® Record stream compositions.

® Repeat for each process.
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Figure 4: PyRe material flowchart [2].
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Abstract — Many nations are expanding or initiating nuclear energy programs as part of a national
energy portfolio. Transitioning to advanced nuclear energy systems imp. and p

energy independence. These advanced nuclear energy systems also must be shown fo enhance safefy,
safeguards, and security in order to be realistically deployed. This is of particular concern to

weapons stales, 1o assure compliance with International Atomic Energy Agency treaty obligations.
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Assumptions

® Modular.
® Time step > 1 month

® Streams must be in a trade-able form.
® Parameters are constant for the
simulation.
® Equation input toolkit under
development.
® Diversion detection must be added
after.
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Subprocesses - Voloxidation

Figure 5: Voloxidation material balance area [3].
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Subprocesses - Electroreduction
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Figure 6: Reduction material balance area [4].
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Subprocesses - Electrorefining
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Figure 7: Refining material balance area [4].
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Subprocesses - Electrowinning
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Average Sim

The first simulation is an example facility with the following input values:
® Temperature — 900 ° C
® Pressure — 500 mTorr
® Rotation — 100 rpm
® Current — 8 A
® Time—1 hr
The simulation is run for 20 time steps with simple source and sink archetypes to

facilitate trading.
This scenario was run to verify trading capabilities and general separations.



Results

Average Sim - Results

10°
i — refine_U_prod
E refine_TRU_prod
I w —— leftover

00 25 50 75 0 125 150 175
Time Step (months)

Figure 9: Product time series of a simple
simulation.
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Figure 10: Waste time series of a simple
simulation.
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Figure 11: Isotopic Composition of Average Waste Streams
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High Current Simulation

Secondly, a scenario was run with a current increase from 8 amps to 10 amps to
observe potential diverted material.

® Temperature — 900 ° C
® Pressure — 500 mTorr
® Rotation — 100 rpm
® Current — 10 A
® Time—1 hr
The simulation is run for 20 time steps with simple source and sink archetypes to

facilitate trading.
We expect only Electroreduction and Electrowinning streams to change.
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Figure 12: Isotopic Composition of Current Diverted Waste Streams
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Max Diversion Scenario

Finally, a simulation was created to observe the maximum possible material
discrepancy. This was done by running two separate simulations, one with each
parameter at their maximum efficiency and the other at their minimums. The
difference of these results will show how much of each material can be diverted.

® Temperature — 1000 °C vs. 500 °C

® Pressure — 120 mTorr vs. 760 mTorr

® Rotation — 100 rpm vs. 0 rpm

® Current —10 Avs. 4 A

® Time—4hrvs. 1hr
The simulation is run for 20 time steps with simple source and sink archetypes to
facilitate trading.
Note: The values shown are cumulative over 20 transactions/months (Pu is of
interest)
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We have shown that PyRe allows Cyclus to simulate a simple pyroprocessing
scenario. Future work includes:

® Increase scenario complexity - test shadow diversion
® |mprove user input
® Allow user-defined equations as input

® Chemistry first principles

In the beginning we marked the following objectives:
® What is the effect of introducing pyroprocessing plants in the fuel cycle?
® How do various facility designs affect throughput and efficiency?

® Where in a pyroprocessing plant will monitoring most effectively detect
material diversion?
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Diversion Algorithm

The first two questions can be answered

through the addition of PyRe to Cyclus.

However, to address the last we must 1
employ an algorithm to analyze small

differences between multiple simulations. - 1
The following are being considered to ‘ T"

provide 'online’ diversion detection: % e

° i M
Cumulative Sum (CUSUM) Figure 14: Example of a cumulative sum
® Maximum likelihood alarm [1].



Introduction
Motivation
Methods
Results
Future Work

Acknowledgement

This material is based upon work supported by the Department of Energy
National Nuclear Security Administration under Award Number(s)
DE-NA0002576 via the Consortium for Nonproliferation Enabling Capabilities.

Prof. Huff is supported by the Nuclear Regulatory Commission Faculty
Development Program, the Blue Waters sustained-petascale computing project
supported by the National Science Foundation (awards OCI-0725070 and
ACI-1238993) and the state of lllinois, the NNSA Office of Defense Nuclear
Nonproliferation R&D through the Consortium for Verfication Technologies and
the Consortium for Nonproliferation Enabling Capabilities (awards DE-
NA0002576 and DE-NA0002534), and the International Institute for Carbon
Neutral Energy Research (WPI-I2CNER), sponsored by the Japanese Ministry of
Education, Culture, Sports, Science and Technology.



Future Work

References |

L

[2]

[3

[4

5

Michele Basseville and Igor V. Nikiforov.
Detection of Abrupt Changes: Theory and Application.
Prentice Hall information and system sciences series. Prentice Hall, April 1993.

R. A. Borrelli, Joonhang Ahn, and Yongsoo Hwang.

Approaches to a Practical Systems Assessment for Safeguardability of Advanced Nuclear Fuel
Cycles.

Nuclear Technology, 197(3):248-264, March 2017.

Robert Jubin.
Spent Fuel Reprocessing.
Technical report, Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States), 2009.

Hansoo Lee, Jong Hyun Lee, Sung Bin Park, Yoon Sang Lee, Eung Ho Kim, and Sung Won
Park.

Advanced Electrorefining Process at KAERI.
ATALANTE 2008, May 2008.

Mark Williamson.
Pyroprocessing Technologies.
Technical report, Argonne National Laboratory (ANL).



Future Work

References 11

[6] Wenzhong Zhou.
Model and Simulation Code Development for Actinide-Containing Fuels, March 2011.



	Introduction
	Motivation
	Methods
	Results
	Future Work

