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Motivation

• Dynamic transition analysis to minimize CO2 emissions in Japan.

• Focus on optimizing electricity supply.

• I2CNER goal: Reduce emissions by 80% from 1990 levels by 2050.

• After 2050: emissions held constant until 2100 if possible.

• Energy supply includes conventional and some I2CNER technology.

• Using The Integrated MARKAL-EFOM System (TIMES) [1].
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Basics

• Constrained linear/mixed-linear optimization problem [2].

• Objective function - System Cost.

• Constraints - CO2 emissions, demand.

• Novel tech - H2 (steam reforming, photocatalytic conversion), absorption
type carbon capture and sequestration (CCS)[3].
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Assumptions

• New Nuclear = Advanced Boiling Water Reactors [4].

• Simplistic, conservative assumption about demand growth = +1.7% per
year[5].

• Nuclear, wind, solar annual growth rate limits based on trends in USA,
China, Japan [5, 6, 7, 8, 9].

• CCS: Available for deployment in 2030, costs reduce by 2050 [3].

• Offshore and onshore wind capacity limited to theoretical potential (about
450 GW and 200 GW respectively).

• H2: Steam reforming available in 2030, photocatalytic conversion in 2050
(assumed cost-competitive with other generation methods) [3] [10].

• Hydropower, geothermal capacity held constant [6].
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Levelized cost projections for solar and wind

Figure 1: Levelized cost projections from Lazard [11] and Acar & Dincer [10]
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Contribution to peak factor (C2P factor)

This is a TIMES parameter that defines what fraction of a energy source’s
capacity is guaranteed to be available during peak demand [2].
Energy source C2P factor

Fossil fuels 1
Nuclear power 1

Solar power 0.42 [3]
Wind 0.20 [12]

This factor is reduced for solar and wind with increasing penetration [12].
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Limitations

• Focus entirely on electricity supply sector.

• Cost of fossil fuels, geothermal, hydropower, steam reforming and nuclear is
constant.

• Area cost not taken into account.

• Emissions tied to energy production, not capacity installation.

• Annual time-step cannot capture seasonal/daily variation in wind, solar
(however annually averaged availability factors are incorporated).

9 / 26



Motivation
Methodology

Results
Conclusion

Future work

Basics
Assumptions
Limitations
Scenarios

Scenarios

Scenario Figures Conventional I2CNER New nuclear
technology technology reactors

1 Fig. 2&3 X 7 X
2 Fig. 4&5 X 7 7

3 Fig. 6&7 X X X
4 Fig. 8&9 X X 7
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Scenario 1: No I2CNER technology, with new nuclear

Figure 2: Scenario 1 Electricity Generation.
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Scenario 1: No I2CNER technology, with new nuclear

Figure 3: Scenario 1 CO2 emissions.

13 / 26



Motivation
Methodology

Results
Conclusion

Future work

Scenario 1
Scenario 2
Scenario 3
Scenario 4

Scenario 2: No I2CNER technology, no new nuclear

Figure 4: Scenario 2 Electricity Generation.
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Scenario 2: No I2CNER technology, no new nuclear

Figure 5: Scenario 2 CO2 emissions.
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Scenario 3: With I2CNER technology and new nuclear

Figure 6: Scenario 3 Electricity Generation.
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Scenario 3: With I2CNER technology and new nuclear

Figure 7: Scenario 3 CO2 emissions.
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Scenario 4: With I2CNER technology, no new nuclear

Figure 8: Scenario 4 Electricity Generation.
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Scenario 4: With I2CNER technology, no new nuclear

Figure 9: Scenario 4 CO2 emissions.
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Conclusions

• Highest impact (so far): nuclear, offshore wind, photocatalytic H2, solar.

• Transition scenario cost (from least to most expensive):

1 Scenario 1 (conventional with nuclear) = Scenario 3 (I2CNER with nuclear)
2 Scenario 2 (conventional without nuclear)
3 Scenario 4 (I2CNER without nuclear)

• H2 and wind can meet I2CNER goals at high cost without nuclear.

• Nuclear is the cleanest, cheapest source of energy.

• Without novel technology, solar and wind are deployed in a 1:2 ratio.
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Future work

• Fix premature retirement bug.

• Develop a scenario with more restricted nuclear (similar to METI
projections).

• Transition from model creation to model refinement.

• Capture realistic, gradual transitions.

• Incorporate fluctuations in demand.

• Add energy storage to supplement renewables and H2.

• Incorporate more I2CNER technologies.

• Conduct sensitivity and cost analysis.
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