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Motivation

® Dynamic transition analysis to minimize CO, emissions in Japan.

® Focus on optimizing electricity supply.

® I2CNER goal: Reduce emissions by 80% from 1990 levels by 2050.
® After 2050: emissions held constant until 2100 if possible.

® Energy supply includes conventional and some I?CNER technology.
® Using The Integrated MARKAL-EFOM System (TIMES) [1].

3/26



Motivation

Methodology
Resul

Conclusion

Future worl

Outline

@ Methodology
Basics
Assumptions
Limitations
Scenarios

4/26



Motivation

Methodology
Resul

Conclusion

Future worl

Basics

Basics

Constrained linear/mixed-linear optimization problem [2].

Objective function - System Cost.
® Constraints - CO; emissions, demand.

® Novel tech - H; (steam reforming, photocatalytic conversion), absorption
type carbon capture and sequestration (CCS)[3].
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Assumptions

New Nuclear = Advanced Boiling Water Reactors [4].
Simplistic, conservative assumption about demand growth = +1.7% per
year[5].

Nuclear, wind, solar annual growth rate limits based on trends in USA,
China, Japan [5, 6, 7, 8, 9].

CCS: Available for deployment in 2030, costs reduce by 2050 [3].

Offshore and onshore wind capacity limited to theoretical potential (about
450 GW and 200 GW respectively).

H»: Steam reforming available in 2030, photocatalytic conversion in 2050
(assumed cost-competitive with other generation methods) [3] [10].

Hydropower, geothermal capacity held constant [6].
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Levelized cost projections for solar and wind
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Figure 1: Levelized cost projections from Lazard [11] and Acar & Dincer [10]
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Contribution to peak factor (C2P factor)

This is a TIMES parameter that defines what fraction of a energy source’s
capacity is guaranteed to be available during peak demand [2].

Energy source | C2P factor
Fossil fuels 1
Nuclear power 1
Solar power 0.42 [3]
Wind 0.20 [12]

This factor is reduced for solar and wind with increasing penetration [12].
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Limitations

® Focus entirely on electricity supply sector.

® Cost of fossil fuels, geothermal, hydropower, steam reforming and nuclear is
constant.

® Area cost not taken into account.
® Emissions tied to energy production, not capacity installation.

® Annual time-step cannot capture seasonal/daily variation in wind, solar
(however annually averaged availability factors are incorporated).
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Scenarios

Scenario | Figures | Conventional I°’CNER New nuclear
technology technology reactors
1 Fig. 2&3 Vv X v
2 Fig. 4&5 v X X
3 Fig. 6&7 Vv v v
4 Fig. 8&9 v v X
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Scenario 1: No I?CNER technology, with new nuclear
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Figure 2: Scenario 1 Electricity Generation.
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Scenario 1: No I?CNER technology, with new nuclear
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Figure 3: Scenario 1 CO, emissions.
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Scenario 2: No I>CNER technology, no new nuclear
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Figure 4: Scenario 2 Electricity Generation.
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Scenario 2: No I>CNER technology, no new nuclear

CO2 emissions
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Figure 5: Scenario 2 CO, emissions.
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Scenario 3: With I?CNER technology and new nuclear
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Figure 6: Scenario 3 Electricity Generation.
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Scenario 3: With I>CNER technology and new nuclear
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Figure 7: Scenario 3 CO, emissions.
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Scenario 4: With I2CNER technology, no new nuclear
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Figure 8: Scenario 4 Electricity Generation.
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Scenario 4: With I2CNER technology, no new nuclear
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Figure 9: Scenario 4 CO, emissions.
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® Highest impact (so far): nuclear, offshore wind, photocatalytic H», solar.

® Transition scenario cost (from least to most expensive):

@ Scenario 1 (conventional with nuclear) = Scenario 3 (I’CNER with nuclear)
® Scenario 2 (conventional without nuclear)
© Scenario 4 (I’CNER without nuclear)

H> and wind can meet I°CNER goals at high cost without nuclear.

® Nuclear is the cleanest, cheapest source of energy.

Without novel technology, solar and wind are deployed in a 1:2 ratio.
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® Fix premature retirement bug.

® Develop a scenario with more restricted nuclear (similar to METI
projections).

® Transition from model creation to model refinement.

® Capture realistic, gradual transitions.

® Incorporate fluctuations in demand.

® Add energy storage to supplement renewables and Ho.

e Incorporate more I°CNER technologies.

® Conduct sensitivity and cost analysis.
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