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Need for Nuclear
Framing the Question

iCAP Goal and Obstacles

Figure: Shows projected CO2 emissions
for UIUC [9]. Offsets include shutdown
of the Blue Waters Supercomputer.

Goal:
Carbon neutrality by 2050 or sooner.

Obstacles:

1 Requires zero net space growth.

2 Campus depends on a system of
steam tunnels for heating.

3 and more...
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The Nuclear Option

Nuclear energy...

1 ...produces almost no carbon
emissions [8].

2 ...can produce high-temperature
steam.

3 ...requires little physical space∗.

*compared to solar and wind.

Figure: Lifetime carbon-equivalent
emissions by energy source from IPCC
findings [8].
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Small Modular and Micro-reactors

• 20 MWth (micro) to 300 MWth
(small modular)

• Fewer resource requirements
(area, shielding, operations)

Features:

• Factory fabricated

• Transportable (especially for
micro-reactors)

• Walk-away safe

• Potential for dispatchability

Figure: Transportable reactor concept. Image
reproduced from US-DOE Nuclear Fast Facts
[11].
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What is the optimal size for a nuclear
reactor on the UIUC grid?
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Methods for Temoa

To answer this question we considered two modeling approaches:

1 RAVEN (INL) - Risk Analysis and Virtual Environment [2][6]

2 TEMOA (NCSU) - Tools for Energy Model Optimization and Analysis [3][4][7]

Both modeling tools are open source and use publicly available version control
software, Git, to track changes.

The analysis in RAVEN requires some external modules that are not currently
available to the public.
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Workflow in RAVEN

Figure: A general optimization workflow in RAVEN. Only the ARMA step was used to
characterize the UIUC grid.
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Methods for Temoa

Temoa Implementation

Temoa uses linear optimization to search decision space [7].

1 Objective Function (minimizes system cost)

2 Constraints
1 Demand must be satisfied at each time step (always).
2 Carbon limits must be satisfied at each time step (optionally).

3 Variables
1 Cost
2 Generation
3 Capacity
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Step 1: Generate Synthetic Histories

Figure: Shows the synthetic (red) vs typical (blue) hourly electricity demand at UIUC.
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Step 1: Generate Synthetic Histories (continued)

Figure: Shows the synthetic (red) vs typical (blue) hourly steam demand at UIUC.
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Figure: Graph representation of the UIUC embedded grid.
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Figure: The change in activity from each energy source from 2020-2030. Assuming 1%
demand growth each year
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Figure: The change in activity from each
energy source from 2020-2030.
Assuming 1% demand growth each year

Figure: Predicted growth in emissions
from iCAP [9].

17 / 38



Motivation
Methods

Grid Characterization: RAVEN
Optimal Sizing: Temoa

Conclusion
Future Work

Temoa: Business As Usual
Temoa: Nuclear Scenarios
Scenario 1: Zero Capital Costs
Scenario 2: No Capacity Limit
Scenario 3: Small Modular Reactor

Nuclear Scenarios

1 Scenario 1: Zero
Capital Costs

2 Scenario 2: No
Capacity Limit

3 Scenario 3:
Limited to Small
Modular Reactor
(100MWth)

Table: Summary of Nuclear Scenarios. Costs from EIA
and NEI reports [5][10]. Assumes thermal efficiency of
33%.

Scenario Operation Costs Capital Costs Maximum Capacity
[$/MWh(th)] [M$/MWth] [MWth]

1 8.91 - -
2 8.91 1.982 -
3 8.91 1.982 100
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Assumptions

1 Assumes fixed capital and variable costs throughout the model time horizon.

2 Nuclear Reactor
• Assumes LWR due to availability of cost estimates.
• Assumes 92% capacity factor.

3 Wind Power
• Assumes 31% capacity factor.

4 Solar Power
• Assumes capacity factor of 16.8%, based on the UIUC solar farm data [1].
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Figure: Graph representation of the UIUC grid with nuclear reactor.
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Figure: The electric generation without a cost constraint on nuclear
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Figure: The carbon equivalent emissions without a cost constraint on nuclear
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Figure: The electric generation without a size constraint on nuclear
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24 / 38



Motivation
Methods

Grid Characterization: RAVEN
Optimal Sizing: Temoa

Conclusion
Future Work

Temoa: Business As Usual
Temoa: Nuclear Scenarios
Scenario 1: Zero Capital Costs
Scenario 2: No Capacity Limit
Scenario 3: Small Modular Reactor

Scenario 3: Generation

Figure: The electric generation with
constrained nuclear.

Figure: The steam generation with
constrained nuclear
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Scenario 3: Generation

Figure: The electric capacity with
constrained nuclear.

Figure: The steam capacity with
constrained nuclear.
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Figure: The carbon equivalent emissions without a cost constraint on nuclear
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Conclusion

1 Replacing “ABBOTT” with
nuclear would resolve all of the
Universities carbon goals,
regardless of other offsets and
building growth.

2 Adding, even limited, nuclear
capacity will cost effectively
meet carbon goals until
mid-decade.

3 This model is agnostic to
implementation:

• One 100 MWth small
modular reactor

• Series of 20 MWth
micro-reactors

Figure: Shows projected CO2 emissions
for UIUC [9]. Offsets include shutdown
of the Blue Waters Supercomputer.
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Future Work

1 Explore parametric uncertainty in Temoa with
• Monte Carlo sampling
• Stochastic Optimization

particularly for natural gas prices and nuclear capital costs.

2 Explore structural uncertainty in Temoa using
Modeling-to-Generate-Alternatives.

3 Explore unmodeled markets and potential cash flows by developing a
dispatch model for RAVEN.
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Mathematics of Temoa

Minimize

Ctotal =
∑
t,v

Ct,v (1)

Subject to

Ds,p =
∑
s,p

Gs,p

Lp =
∑
t,p

R̂CO2,{t,p}

Where

Ctotal = total cost

Ds,p = energy demand by sector, time period

Gs,p = energy generation by sector, time period

Lp = emission limits by time period

R̂CO2,{t,p} = emissions by technology, time period
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FAQ

• What does ”TURBINE” mean?
The ”TURBINE” technology simply converts steam to electricity since
Abbott power plant is actually a cogeneration plant. We assumed that a
nuclear reactor that could replace Abbott would also be used for
cogeneration.

• Can this analysis be applied to other universities or energy systems?
Yes. While the University of Illinois is unique in its self-reliance, the idea
that nuclear power fulfills a role in the energy mix that is not easily satisfied
by renewables is not.
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#ShutDownSTEM

This lecture has been pre-recorded.
Questions can be directed to:
Samuel G. Dotson
sgd2@illinois.edu
Thank you.
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